Traffa

Modline MCR/MCH 65

Innovative Antriebslösungen

Der optimale Antrieb individuell für Ihre Anforderung

MCR/MCH Serie / ~

Beschreibung MCR/MCH

Abb. 1

Die Linearachsen der Produktfamilie MCR/MCH System bestehen aus einem selbsttragenden Aluminium-Strangpressprofil und einem Antrieb durch einen stahlverstärkten Zahnriemen aus Polyurethan mit AT-Zahnprofil.

- Das reduzierte Gewicht wird durch den leichten Rahmen und die Aluminiumläufer erreicht.
- Es sind drei verschiedene Baugrößen erhältlich: 65, 80, 105 mm
- Hole Verfahrgeschwindigkeiten

MCR

Vier + vier Laufrollen mit gotischem Laufbahnprofil oder flachem Außenprofil, die auf zwei Stangen aus gehärtetem Stahl im Inneren des Profils geführt werden.

MCH

Im Inneren des Profils befindet sich eine wartungsarme Kugelumlaufführung.

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der Serie MCR/MCH eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Die Abmessungen sind entsprechend der Norm EN 755-9 toleriert. Das verwendete Material ist eloxiertes Aluminium der Legierung 6060. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Antriebsriemen

In den Lineareinheiten der Serie MCR/MCH werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemen-

scheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens könnendie folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Der Antriebsriemen läuft an der Oberseite des Aluminiumprofils in Führungsnuten und deckt dadurch das sich im Profilinnern befindliche Antriebs- bzw. Führungssystem ab.

Laufwagen

Der Laufwagen der Lineareinheiten der Serie MCH/MCR besteht aus eloxiertem Aluminium. Für die Größen 80 und 105 sind zwei unterschiedlich lange Wagen verfügbar.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J	0 400	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2,70	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N —	N —	%	
mm ²	mm ²		
205	165	10	60-80

Führungssystem

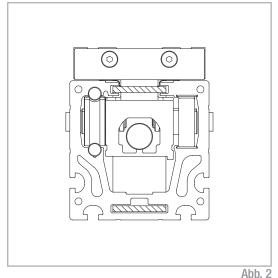
Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

MCR mit gotischem Laufbahnprofil

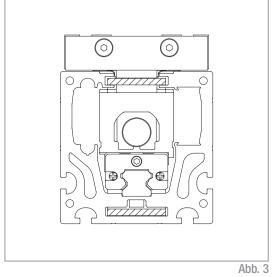
- In das Aluminiumgehäuse sind Stäbe aus gehärtetem Stahl (58/60 HRC, Toleranz H6) fest eingesetzt.
- Der Wagen ist mit vier + vier Lagereinheiten ausgestattet, von denen vier gotisches Laufbahnprofil in ihren Außenring haben, um auf den Stahlstangen zu laufen, und vier mit einem flachen Außenring versehen sind.
- Die Lager sind auf Stahlstiften montiert, von denen zwei exzentrisch ausgeführt sind, um die Einstellung des Spiels und der Vorspannung zu ermöglichen.
- Der Antriebsriemen wird über die gesamte Profillänge unterstützt, um ein Durchbiegen zu vermeiden und die Linearführung zu schützen.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Gute Positioniergenauigkeit
- Hohe Laufruhe
- Wartungsarm (abhängig vom Anwendungsfall)

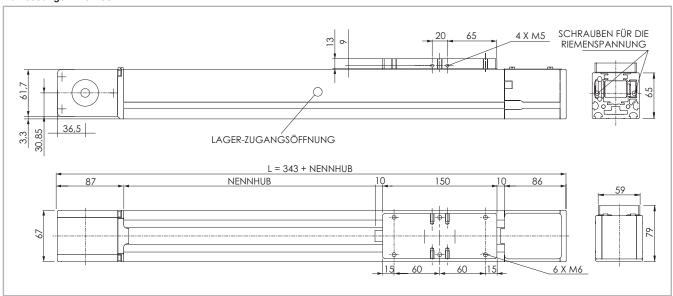

MCH mit Kugelumlaufführung

- Eine Kugelumlaufführung mit hoher Belastbarkeit ist in einem eigenen
 Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen wird auf zwei vorinstallierte Kugellagerblöcke montiert.
- Die zwei Kugellagerblöcke ermöglichen es dem Laufwagen, Belastungen in den vier Hauptrichtungen zu widerstehen.
- Die beiden Blöcke haben Dichtungen auf beiden Seiten. Falls erforderlich kann in sehr staubigen Umgebungen ein zusätzlicher Abstreifer montiert werden.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.


Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe zulässige Momentbelastungen
- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Geräuscharm

MCR



MCH

MCR 65

Abmessungen MCR 65

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 4

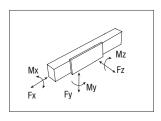
Technische Daten

	Тур
	MCR 65
Maximale Hublänge [mm]	5800
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	32 AT 05
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	0,87
Gewicht Hub Null [kg]	3,7
Gewicht je 100 mm Hub [kg]	0,475
Losbrechmoment [Nm]	0,4
Riemenscheiben-Trägheitsmoment [g mm²]	267443
Schienengröße [mm]	Ø8
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 4

Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
MCR 65	0,080	0,068	0,148
			Tab. 5

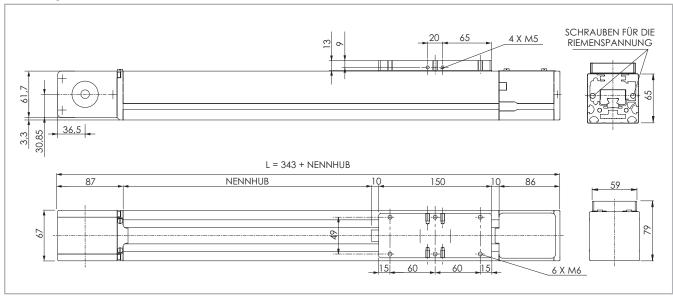

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbrei- te [mm]	Gewicht [kg/m]	
MCR 65	32 AT 05	32	0,105	

Tab. 6

Riemenlänge (mm) = $2 \times L - 69$


Tragzahlen

Тур	F _x [N]		F [N]	F [I	: ^z N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 65	1344	960	1964	2192	9195	65,1	132	93,9

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

MCH 65

Abmessungen MCH 65

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

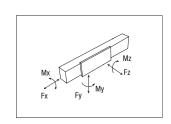
Abb. 5

Technische Daten

	Тур
	MCH 65
Maximale Hublänge [mm]	8750
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	30
Zahnriemen-Typ	32 AT 05
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	0,9
Gewicht Hub Null [kg]	3,85
Gewicht je 100 mm Hub [kg]	0,58
Losbrechmoment [Nm]	0,3
Riemenscheiben-Trägheitsmoment [g mm²]	267443
Schienengröße [mm]	15
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 8

⁽¹⁾ Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

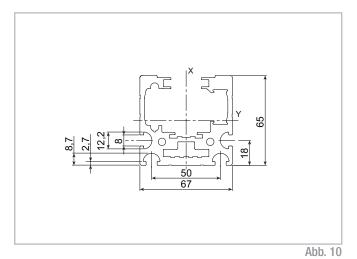

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
MCH 65	0,080	0,068	0,148
			Tab. 9

Antriebsriemen

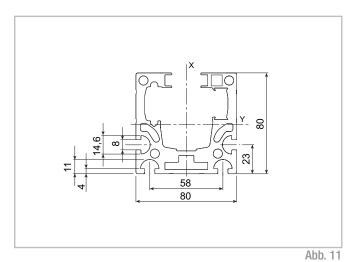
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbrei- te [mm]	Gewicht [kg/m]
MCH 65	32 AT 05	32	0,105
			Tab. 10

Riemenlänge (mm) = $2 \times L - 69$

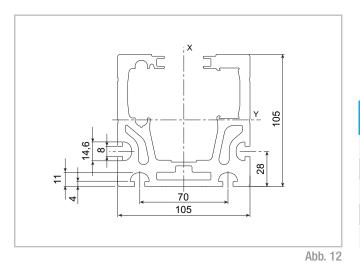


Tragzahlen


Тур	F _x [N]		F _x F _y F _z [N] [N]		M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 65	1344	960	25400	19720	25400	240	1168	1168

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

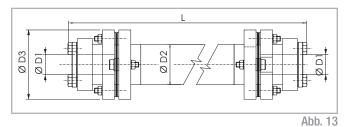
Profil-Spezifikationen

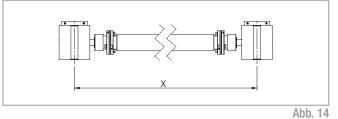


Profil 65x67	
Gewicht [Kg/m]	4.5
Max. Länge [mm]	9000
Trägheitsmoment lx [10 ⁷ mm ⁴]	0.080
Trägheitsmoment ly [10 ⁷ mm ⁴]	0.068
Polares Trägheitsmoment lp [10 ⁷ mm ⁴]	0.148

Profil 80x80	
Gewicht [Kg/m]	6.3
Max. Länge [mm]	8000
Trägheitsmoment lx [10 ⁷ mm ⁴]	0.179
Trägheitsmoment ly [10 ⁷ mm ⁴]	0.147
Polares Trägheitsmoment lp [10 ⁷ mm ⁴]	0.326

Tab. 29

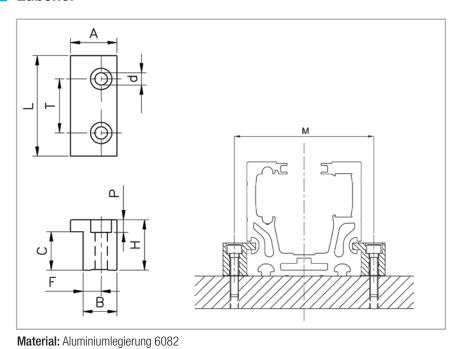

Profil 105x105	
Gewicht [Kg/m]	11
Max. Länge [mm]	7600
Trägheitsmoment lx [10 ⁷ mm ⁴]	0.448
Trägheitsmoment ly [10 ⁷ mm ⁴]	0.576
Polares Trägheitsmoment lp [10 ⁷ mm ⁴]	1.015

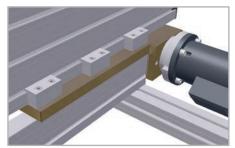

Tab. 30

Lineareinheiten im Paralleleinsatz

Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Lineareinheiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.




30	DO.	Dootellanda	

Passend für Typ	Zapfentyp	D1	D2	D3	Bestellcode	L
MCR/MCH 65	AP 12	12	25	45	GK12P1A	L= X-80 [mm]
MCR/MCH 80	AP 20	20	40	69,5	GK20P1A	L= X-97 [mm]
MCR/MCH 105	AP 25	25	70	99	GK25P1A	L= X-130 [mm]

Tab. 31

Zubehör

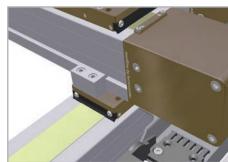


Abb. 15

Тур	А	L	Т	d	Н	Р	С	F	В	M	Bestellcode
MCR/MCH 65	25	50	25	6,7	20	6,8	13,5	10	18	87	415.0380
MCR/MCH 80	25	50	25	6,7	25	6,8	18,6	10	18	100	415.0760
MCR/MCH 105	30	50	25	9	30	9,5	23,6	12	22	129	415.0761

Tab. 32

Einsetzbare Muttern und Platten

Federmutter

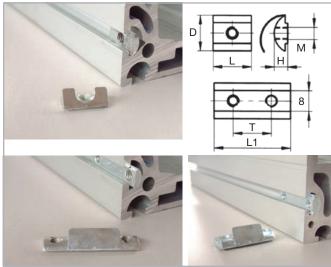
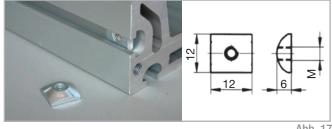


Abb. 16

Die Mutter ist alle Module geeignet (8 mm-Nut).

Material: Mutter aus verzinktem Stahl, mit der Stahlfeder verschweißt.

Einzelmutter	MC 80-105	MC 65
M5	A32-55	B32-55
M6	A32-65	B32-65
M8	A32-85	B32-85
		Tab. 33


Doppelmutter	MC 80-105	MC 65
M6	A32-67	B32-67

Tab. 34

Größe					
Basismodul	D	Н	L	L1	T
MC 80-105	14	7.8	20	40	30
MC 65	11	4.1	20	40	30

Tab. 35

Einfache Mutter

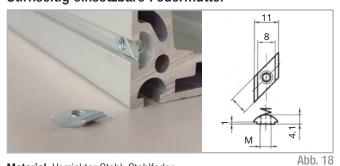
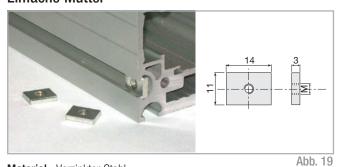

Gewinde	Bestellcode
M5	209.2431
M6	209.2432
M8	209.2433
	Tah 36

Abb. 17

Material: Verzinkter Stahl. Vom Ende des Profils her einführen.

Geeignet für die Baureihen: MC 80-105

Stirnseitig einsetzbare Federmutter



Material: Verzinkter Stahl, Stahlfeder. einschwenkbar.

Geeignet für die Baureihen: MC 65

Bestellcode
BD31-30
BD31-40
BD31-50

Einfache Mutter

Material: Verzinkter Stahl. Durch die Nut einführen.

Geeignet für die Baureihen: MC 65

Gewinde	Bestellcode
M4	D32.40
M5	D32.50
M6	D32.60

Tab. 37 Tab. 38

Sensorhalterungen

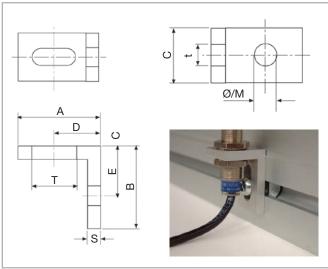


Abb. 20

Material: Natürlich eloxierte, nicht korrosive Legierung

Gew	inde							Beste	llcode
Α	В	С	D	Ε	S	Txt	Ø/M	Ø	M
45	45	20	25	25	5	20X6,5	6	76	A 30-86
35	25	20	19	15	5	20X6,5	4	54	64
35	25	20	19	15	5	20X6,5	5	55	65
35	25	20	19	15	5	20X6,5	6	56	66
25	25	15	14	15	4	13,5X5,5	3	53	63
25	25	14	14	15	4	13,5X5,5	4	54	64
25	25	15	14	15	4	13,5X5,5	5	55	65
25	25	15	14	15	4	13,5X5,5	6	56	66
Für all	e Mod	ule ge	eignet						Tab. 39

Tab. 39

Stahlabdeckung für die Baureihe MCR/MCH 80-105

Material: Edelstahlfolie

Optional: Zum zusätzlichen Schutz vor Staub und Schmutz kann ein magnetischer Dichtungsstreifen am Profil installiert werden, um den Riemen abzudecken. Aufgrund des Magnetstreifens wird empfohlen, die Verwendung in Gegenwart von eisenhaltigen Ablagerungen zu vermeiden.

M = Gewindeausführung

 $\mathbf{Ø} = \mathsf{Ausf\"{u}hrung}$ ohne Gewinde

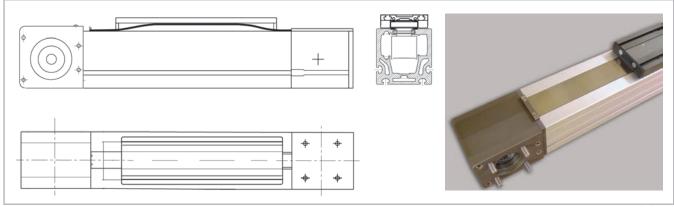
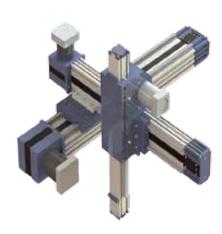



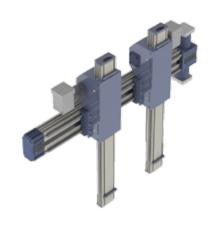
Abb. 21

Zweiachssysteme

Dreiachssysteme

Dreiachssysteme

Zentrale:


TBT Technisches Büro Traffa e.K.

Theodor-Heuss-Str. 8 71336 Waiblingen

Tel.: +49 (0)7151/60424-0 Fax.: +49 (0)7151/60424-40

E-Mail: info@traffa.de Web: www.traffa.de

Zweiachssysteme

Dreiachssysteme

Dreiachssysteme

NL Bayern:

TBT Technisches Büro Traffa e.K.

Schöneckerstr. 4 91522 Ansbach

Tel.: +49 (0)981/487866-50 Fax.: +49 (0)981/487866-55

E-Mail: mail@traffa.de Web: www.traffa.de